If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2+3r=0
a = 7; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·7·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*7}=\frac{-6}{14} =-3/7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*7}=\frac{0}{14} =0 $
| 5u=3u-4 | | -7+4m+10=-2m | | 18/k=2 | | -96=-6(4p-4) | | 5=2y-7 | | 3(3r-2)=-1+9r-13 | | b-(-75)=-23 | | 10-x=-27 | | 2=1/4a+8 | | n=1+2/3 | | (x+4)^2=18x | | s-2=+3 | | b-(-75)=-33 | | 3y+8=y^2+14y+38 | | 7+3n=2 | | 2y+1/2=1 | | 6.1x-1.6x=153 | | 1b-(-75)=-23 | | 8k-4-6k=23 | | +6-y=+16 | | -45x=1080 | | 2+1/3x=2/3 | | 5x+1/5=x/9+9 | | -4680=65v | | 6g-5=55 | | 7q-1(3q+14=18 | | p/2+7=10 | | 3(1+4n)-2(5n-)=25 | | y^2+14y+38=3y+8 | | B=4a-5 | | 2x/2x+5=4/5-6/4x+10 | | -3x+16=4(x+4) |